Java program to find Sum, Transpose and matrix multiplication

Last updated:5th Nov 2021

In this program, you will write a java program to display 3x3 matrixes. Find the sum, multiplication, and transpose operation.

Program to find sum, multiplication, and transpose operation

``````import java.util.Scanner;
class Matrix
{
public static void main(String args[])
{
int rowa, cola, rowb, colb, total=0, c, d, k;

Scanner in = new Scanner(System.in);
System.out.println("Enter the number of rows and columns of first matrix");
rowa = in.nextInt();
cola = in.nextInt();

int first[][] = new int[rowa][cola];

System.out.println("Enter elements of first matrix");

for (c = 0; c < rowa; c++)
for (d = 0; d < cola; d++)
first[c][d] = in.nextInt();

System.out.println("Enter the number of rows and columns of second matrix");
rowb = in.nextInt();
colb = in.nextInt();
int second[][] = new int[rowb][colb];
if (cola != rowb)
System.out.println("The matrices can't be multiplied with each other.");
else
{
int multiply[][] = new int[rowa][colb];

System.out.println("Enter elements of second matrix");

for (c = 0; c < rowb; c++)
for (d = 0; d < colb; d++)
second[c][d] = in.nextInt();

for (c = 0; c < rowa; c++) {
for (d = 0; d < colb; d++) {
for (k = 0; k < rowb; k++)
total = total + first[c][k]*second[k][d];

multiply[c][d] = total;
total = 0;
}
}

System.out.println("Product of the matrices:");

for (c = 0; c < rowa; c++) {
for (d = 0; d < colb; d++)
System.out.print(multiply[c][d]+"\t");

System.out.print("\n");
}
}
int sum[][]=new int[rowa][cola];
for(c=0;c<rowa;c++)
{
for(d=0;d<cola;d++)
{
sum[c][d]=first[c][d]+second[c][d];
}
}
System.out.println("sum of the matrices:");
for(c=0;c<rowa;c++){
for(d=0;d<cola;d++){
System.out.print(sum[c][d]+"\t");
}
System.out.print("\n");
}
System.out.println("Transpos of the matrices:");
for(c=0;c<cola;c++){
for(d=0;d<rowa;d++){
System.out.print(sum[d][c]+"\t");
}
System.out.print("\n");
}
}
}
``````

output

```C:\gaurav>javac Matrix.java
C:\gaurav>java Matrix
Enter the number of rows and columns of first matrix
3 3
Enter elements of first matrix
1 2 3
2 3 4
1 2 3
Enter the number of rows and columns of second matrix
3 3
Enter elements of second matrix
1 2 3
4 5 6
7 8 9
Product of the matrices:
30	36	42
42	51	60
30	36	42
sum of the matrices:
2	4	6
6	8	10
8	10	12
Transpos of the matrices:
2	6	8
4	8	10
6	10	12```