Java program to find Sum, Transpose and matrix multiplication
Last updated:5th Nov 2021
In this program, you will write a java program to display 3x3 matrixes. Find the sum, multiplication, and transpose operation.
Program to find sum, multiplication, and transpose operation
import java.util.Scanner;
class Matrix
{
public static void main(String args[])
{
int rowa, cola, rowb, colb, total=0, c, d, k;
Scanner in = new Scanner(System.in);
System.out.println("Enter the number of rows and columns of first matrix");
rowa = in.nextInt();
cola = in.nextInt();
int first[][] = new int[rowa][cola];
System.out.println("Enter elements of first matrix");
for (c = 0; c < rowa; c++)
for (d = 0; d < cola; d++)
first[c][d] = in.nextInt();
System.out.println("Enter the number of rows and columns of second matrix");
rowb = in.nextInt();
colb = in.nextInt();
int second[][] = new int[rowb][colb];
if (cola != rowb)
System.out.println("The matrices can't be multiplied with each other.");
else
{
int multiply[][] = new int[rowa][colb];
System.out.println("Enter elements of second matrix");
for (c = 0; c < rowb; c++)
for (d = 0; d < colb; d++)
second[c][d] = in.nextInt();
for (c = 0; c < rowa; c++) {
for (d = 0; d < colb; d++) {
for (k = 0; k < rowb; k++)
total = total + first[c][k]*second[k][d];
multiply[c][d] = total;
total = 0;
}
}
System.out.println("Product of the matrices:");
for (c = 0; c < rowa; c++) {
for (d = 0; d < colb; d++)
System.out.print(multiply[c][d]+"\t");
System.out.print("\n");
}
}
int sum[][]=new int[rowa][cola];
for(c=0;c<rowa;c++)
{
for(d=0;d<cola;d++)
{
sum[c][d]=first[c][d]+second[c][d];
}
}
System.out.println("sum of the matrices:");
for(c=0;c<rowa;c++){
for(d=0;d<cola;d++){
System.out.print(sum[c][d]+"\t");
}
System.out.print("\n");
}
System.out.println("Transpos of the matrices:");
for(c=0;c<cola;c++){
for(d=0;d<rowa;d++){
System.out.print(sum[d][c]+"\t");
}
System.out.print("\n");
}
}
}
output
C:\gaurav>javac Matrix.java C:\gaurav>java Matrix Enter the number of rows and columns of first matrix 3 3 Enter elements of first matrix 1 2 3 2 3 4 1 2 3 Enter the number of rows and columns of second matrix 3 3 Enter elements of second matrix 1 2 3 4 5 6 7 8 9 Product of the matrices: 30 36 42 42 51 60 30 36 42 sum of the matrices: 2 4 6 6 8 10 8 10 12 Transpos of the matrices: 2 6 8 4 8 10 6 10 12